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Part I: The Quantum Oscillator Wavefunctions 
 
For a (classical) oscillator potential of , the solutions to the 
Schrödinger equation are, for quantum number n = 1, 2, 3: 
 

 

 

 

 
The allowed energy levels are given by the formula:  for n = 1, 2, 3, … 

 
 

1. The above energy level equations states that the energy levels of the harmonic oscillator 
are quantized. This is not a new idea; we encountered it in the development of quantum 
mechanics well before Schrödinger came onto the scene. Try to remember: what did the 
quantization of oscillator energy help explain? Do you remember who came up with it? 

 
 
 

 
We’d like to visualize the time-dependent wave-functions in Mathematica. Before we can do 
that, we’ll need to solve for the normalization constant. 
 

2. Find A1. You may use the identity . 

 
 
 
 
 
 
 
 
 
 

3. Open the Mathematica notebook phys301-quantumoscillator.nb. Run Cell 1 using 
Shift+Enter, which sets all our constants to 1; we’re just interested in the general shape of 
the wavefunctions. Run Cell 2, which defines all the equations we’ll use. Write, in words, 
what equations are included in this cell. 
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4. Notice that after you run Cell 2, the variables A1, A2, and A3 are highlighted in blue. 
This is Mathematica telling us that they are undefined. In the blank space provided, input 
a formula for the constant A1 that you found above. Expressions for the other constants 
are already included. Run the cell. 

 
5. Input three functions in Cell 4 to check that we have correctly normalized the first three 

wave functions. Describe what you did. Is the normalization correct? 
 
 
 
 
 

6. Run Cell 5 to plot the first three wave functions, as well as the potential.  
 

7. Modify the command in Cell 6 so that the wave function looks more like the image in 
your book, spaced out vertically according to energy level. Does the spacing between 
energy levels get larger, smaller, or stay the same as you go to higher energy levels? 

 
 
 
 
Part II: The Correspondence Principle 
 

1. A classical harmonic oscillator might be a mass on a spring (with zero friction or air 
resistance). We define the equilibrium position of the spring to be x = 0. Imagine you 
displace the spring a distance Dx and let it go. Some random time later, you come back 
and take a picture of the system. What is/are the most likely position(s) where the spring 
will be in your picture? What is/are the least likely position(s)? 

 
 
 
 
 

2. Run Cell 7 to create an interactive plot of the probability density of the quantum 
harmonic oscillator for different levels of n. Does this system obey the correspondence 
principle? Why or why not? 

 
 
 
 
 

3. Some additional practice with classical systems will help you on the next part. Imagine you 
have a spring with spring constant  and you attach an object of mass m = 1.0 kg. 

For a classical oscillator,  and . 

k = 9.87 Nm
U (x) = 1

2 k x
2 ω = k

m
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a. Imagine you displace the object by +10 cm (+0.10 m) and let go. How long does 
it take to return to +10 cm, one full period? What is the maximum speed of the 
object, and where does that occur? 

 
 
 
 
 
 
 
 

b. Now imagine you displace the object by +20 cm (+0.20 m) and let go. How long 
does it take to return to +20 cm, one full period? What is the maximum speed of 
the object, and where does that occur? 

 
 
 
 
 
 
 
 

c. Now imagine you replace the spring a stiffer spring that has four times the spring 
constant as the original spring. You displace the object by +10 cm (+0.10 m) and 
let go. How long does it take to return to +10 cm, one full period? What is the 
maximum speed of the object, and where does that occur? 
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Part III: Time-Dependence 
1. What is the time dependent portion of the wavefunction, ? Input this formula into Cell 8. 

The other formulas define the full, time-dependent wavefunction, . 
 
 

2. The wave function is a complex number which can be broken up into real and imaginary 
parts. We can visualize a complex number using the complex plane, with the real 
component on the horizontal axis and the imaginary component on the vertical axis. For 
the complex number -2 + 3i, draw its location on the complex plane, and find the absolute 
value (or modulus) of the complex number.  

 
 
 
 
 
 

3. Run Cell 9 to create animations of the real and imaginary parts of the time-dependent 
wave function, with dashed lines. The absolute value (or modulus) of the wave function 
is shown as a solid line. Describe what you see. 

 
 
 
 
 
 
 

4. Two students are debating what they see on the screen. 
Student 1: “The wave-function oscillates faster as we go to higher n. This means the 
period of the oscillating system is smaller, and therefore the angular frequency 
greater. In our classical analogy, this is like replacing the original spring with a 
stiffer spring every time we increase n. ” 
Student 2: “I see what you’re saying, but we also found the maximum speed of the 
stiff spring pulled to 10 cm was the same if we pulled the original spring 20 cm. So 
maybe as we are increasing n, we are really increasing the distance that the particle 
can travel – like if this were an infinite square well, we’d be increasing the length of 
the box.” 
 
Both students have errors in their reasoning. Explain what each student has wrong, and 
provide a correct explanation to why the wave function oscillates faster as we go to 
higher n, including a classical analogy. Hint: as all things quantum mechanical, think 
energy. 

  

φ(t)
Ψn(x,t) =ψ n(x)φn(t)



Phys 301 Modern Physics: Lecture 27 Handout   Fall 2023 

5 

5. Though incorrect in their reasoning, Student 1 brings up an interesting question. What 
happens if we increase w of our system? In the classical analogy, this is like using a stiffer 
spring. For each of the graphs, predict what changes you will see if you replace w = 1 with 
w = 2. 

 
Cell/Graph Prediction Observation 

Cell 5: Graph of potential 
energy (dashed line) 
 
 
 

  

Cell 5: Graph of first three 
wave-functions (solid lines) 
 
 
 

  

Cell 6: Graph of first three 
wave functions (solid lines), 
spaced out vertically 
according to energy level. 
 

  

Cell 9: Animations of real 
(dashed), imaginary (dashed) 
and absolute values (solid) of 
first three wavefunctions.  
 

  

 
 

6. When you’ve finished your predictions, replace w = 1 with w = 2 in Cell 1. Re-run the 
cells, in order, and record how your observations compared to your predictions. 


