Phys 301 Class 11: Standing Waves, Beats

Finish Up Class 10 Handout B

•When we add two identical waves traveling in opposite directions:

$$\begin{array}{ll} 2Y\sin(kx)\cos(\omega t)\\ \hline \\ \text{Displacement}\\ \text{at position } x \end{array} \begin{array}{ll} \text{Oscillating}\\ \text{Term} \end{array}$$

 $2Y\sin(kx)\cos(\omega t)$

How to make this in real life?

- •Boundary conditions.
- •So far, we've been working with waves that extend through infinity ("out the window" in PhET).

Continuing...

- 1. Handout A: Standing Waves
- 2. A bit about sound
- 3. Handout B: Beats
- 2-Slit Interference Preview if time

Sound Waves

•Longitudinal waves (compression, expansion)

How Related to Standing Waves?

- •Air molecule displacements from equilibrium.
- •To right: "Two open ends"

(b)

•Flute

Your PhET Example

- •One closed end, one open end.
- •Clarinet
- •Your *n* = 1 is the "fundamental mode" or "first harmonic."

©2012, Dan Russell

Two Fixed Boundaries

- •Violin, piano
- •Guitar
 - Which string will produce the lowest note? Look but don't touch!

Beats Handout

340 Hz 341 Hz ())+= 350 Hz = + 370 Hz ())+

A New Way to Visualize Waves

Overhead View:

(a)

Sound Interference Demonstration