Phys 301 Class 14 Blackbody Radiation (Maybe Compton Effect)

What is a "Blackbody"?

- •Theoretical object
- •Perfectly absorbs all electromagnetic radiation.
- •Emits radiation at same rate absorbed.
- •Our model: stars

Figure 6.2 A blackbody is physically realized by a small hole in the wall of a cavity radiator.

Alberio: A Famous Double Star

Handout Part I

Summary

- •As temperature increases…
- Peak wavelength decreased (peak frequency increases)
	- Wien's Law: $\lambda_{\rm peak} T = 2.898 \times 10^{-3} \text{m} \cdot \text{K}$
- Total power radiated increases (integral)
	- Stefan's Law: $P(T) = \sigma A T^4$
	- Stefan-Boltzman Constant: $\sigma = 5.670 \times 10^{-8} \frac{W}{m^2 W}$ m^2K^4

The Planck Function

$$
B_{\lambda}(T) = \frac{2hc^2}{\lambda^5} \frac{1}{e^{hc/\lambda kT} - 1}
$$

Experimentally determined by 1900s – but why this shape?

Some factors of π ? Differences between power per area per solid angle...

Back to the "Blackbody"

- •If light is a wave, reflecting off of sides. Boundary conditions $(E$ -field $= 0$ at the wall) Standing waves!
- •Number of modes proportional to frequency squared.

Back to the "Blackbody"

- •If any energy possible… and all equally likely ("equipartition theorem" from classical physics)...
- •Unlimited energy!

Ultraviolet Catastrophe

Wavelength of radiation in nm

How to Resolve? 1900, Max Planck

- Wall is composed of little oscillators.
- •Oscillators absorb and emit radiation.
- •Vibrate at frequency *f*, absorb and emit at frequency *f*.
- •If all *f* allowed, most oscillators will have high *f*, UV dominates.

Quantization

- Every oscillator can ONLY have energy which is an INTEGER multiple of some tiny tiny value ϵ .
- Allowed: ϵ , 2ϵ , 3ϵ , \cdots , $n\epsilon$
- •Forbidden: $\frac{1}{2}$ $\epsilon, 3.7\epsilon, \sqrt{2}\epsilon$
- $\frac{2}{4}$ •Planck puts the "*quanta"* in *quantum mechanics.*

If $so...$

- •Relative probability that oscillator has energy while in thermal contact with walls of temperature *T:* ϵ $\text{Rel } \text{Prob } (\epsilon) =$ $\frac{1}{\sqrt{2}}$ $e^{(\epsilon/kT)}-1$
- Result: Unlikely for any oscillator to have large energy. Unlikely to emit a large amount of energy.

Energy and Frequency Related for an oscillator.

$$
E_n = n\epsilon
$$

$$
E_n = nhf = n\frac{hc}{\lambda}
$$

 $h = 6.626 \times 10^{-34}$ J ⋅ s Planck's Constant

How is Energy Quantized in "Real World"? Why did no one notice?

- •Pendulum $L = 25$ cm, $m = 0.01$ kg
- •Swings with frequency $f = 1$ Hz.
- $\bullet E=\ m$ *qy*

$$
E_1 = 1hf = mgy_1
$$

\n
$$
E_2 = 2hf = mgy_2
$$

\n
$$
\Delta E = (2hf - 1hf) = mgy_2 - mgy_1
$$

\n
$$
hf = mg\Delta y
$$

\n
$$
\frac{hf}{mg} = \Delta y = \frac{(6.626 \times 10^{-34} \text{J} \cdot \text{s})(1 \text{ Hz})}{(0.01 \text{ kg}) (9.8 \frac{\text{N}}{\text{kg})}
$$

\n
$$
= 6.76 \times 10^{-33} \text{m}
$$

What Have We Learned?

- Young's Double Slit Experiment
	- Light acts like a wave.
- •Blackbody Radiation, Planck Function
	- Energy is quantized.
- •Compton Scattering and Photoelectric Effect
	- Light acts like a particle.
- •Compton Scattering handout