Phys 301 Class 18 Spectroscopy, the Bohr Model

3 Types of Spectra

- •First: Blackbody or Continuous Radiation
- •Objects that are very hot and dense.

Types of Spectra

Types of Spectra

Types of Spectra

•Which type do we see when observing the Sun?

Emission Line Spectrum

Atomic "Fingerprints"

Figure 6.15 The emission spectrum of atomic hydrogen: The spectral positions of emission lines are characteristic for hydrogen atoms. (credit: "Merikanto"/Wikimedia Commons)

Figure 6.16 The emission spectrum of atomic iron: The spectral positions of emission lines are characteristic for iron atoms.

Balmer (1885) Formula (1885) 397 410 434 486 Wavelength (nm) 656

- •The wavelengths of hydrogen emission lines were measured in the laboratory.
- •4 (or 5) lines in the visible.•This equation works: but why?

 \bigcirc

$$\frac{1}{\lambda} = R_H \left(\frac{1}{2^2} - \frac{1}{n^2}\right) \text{ for } n = 3,4,5,6(,7)$$

What are the units of R_H ?

Rydberg Formula (1888)

$$\frac{1}{\lambda} = R_H \left(\frac{1}{n_f^2} - \frac{1}{n_i^2}\right) \text{ for } n_i = n_f + 1, n_f + 2, n_f + 3 \cdots$$

 $R_H = 1.09737 \times 10^7 \mathrm{m}^{-1}$ (Rydberg Constant for Hydrogen)

- •Other emission lines discovered.
- Special names given to some values of n_f generally person who first experimentally observed that "series" of lines.

Spectral Series of Hydrogen

n _f	Name	Approx. Region of EM	Discovery
1	Lyman	Ultraviolet	1906-1914
2	Balmer	Visible, UV	1885 (equation)
3	Paschen	Infrared; all subsequent series overlap	1908
4	Brackett		1922
5	Pfund		1924
6	Humphreys		1953

Practice Problem: Pfund

- •What is the longest wavelength possible in the Pfund series? ($n_f = 5$)
- •What is the shortest wavelength possible?
- •How many lines are in the Pfund series?

 $R_{H} = 1.09737 \times 10^{7} \mathrm{m}^{-1} = 0.0109737 \ \mathrm{nm}^{-1}$

•What is the longest wavelength possible in the Pfund series? $(n_f = 5)$

$$\frac{1}{\lambda} = R_H \left(\frac{1}{5^2} - \frac{1}{6^2} \right), \lambda = 7456 \text{ nm}$$

•What is the shortest wavelength possible? $\frac{1}{\lambda} = \lim_{n_i \to \infty} R_H \left(\frac{1}{5^2} - \frac{1}{n_i^2} \right), \lambda = 2278 \text{ nm}$

•How many lines are in the Pfund series? There are an infinite number of lines in each series.

BUT WHY??? Niels Bohr, 1913

- •Notice Rydberg Formula depends not on λ , but $1/\lambda$. (Which *we* know is proportional to energy...)
- •First, what was the state of knowledge of atoms?

Atomic Models

I should

go to there...

- •1904, Thomson, "plum pudding" model
- •1909, Rutherford gold foil experiment,
 - Nucleus is positively charged.
 - Nucleus contains almost all the mass,
 - But only exists in one small point.
 - Negatively charged electrons are far away.
- Why these spectra? Why does electron, if attracted to nucleus, stay far away?

An Analogy – Planets are Gravitationally Attracted to the Sun

Sum $F_c = F_g$

Note: orbits are *not* circular because the Earth and Sun orbit their mutual center of mass.

Classical Derivation of Bohr Radius, Energy Levels

•Handout Parts I and II

Derivation Results

$$r_n = a_0 \frac{n^2}{Z} \qquad \qquad E_n = Z^2 \frac{E_0}{n^2}$$

n =Quantum Number

Z =atomic number (charge of nucleus)

 $a_0 = 5.29 \times 10^{-11} \mathrm{m} = 0.529 \mathrm{~\AA}$ Bohr Radius of Hydrogen (radius of first orbital)

 $E_0 = -13.6\,\,\mathrm{eV}$, ground state energy of hydrogen atom

Energy Level Diagram, Transitions

•Handout

What Have We Learned?

- Young's Double Slit Experiment
 - Light acts like a wave.
- •Blackbody Radiation, Planck Function
 - Energy of oscillators is quantized.
- Photoelectric Effect and Compton Scattering
 - Light acts like a particle of energy $\overline{E} = hf$.
- Spectroscopy and Bohr's Model
 - Energy levels of electrons are quantized.