
Phys 301 Class 21
Classical Probability,
Probability Density



Thoughts on 3-2-1 Memo?
•A proposal:
• 3 specific questions about the reading (explain the nature 

of your question, e.g. what is confusing?)
• 2 connections to previous material (in this class or 

others)?
• 1 main take-away (if a friend asked "What was I 

supposed to get out of the reading?" 30 seconds before 
class, what would you say?)



Finish Up Matter Waves
•“Wave Properties of Matter” through page 3 
(skip last page)
•Voting question, then What is Matter? 
Discussion
•Start on Classical Probability



Electro
n Source

Which slit did 
THIS electron 
pass through?
A. Left Slit
B. Right Slit
C. Either Left 

or Right, 
but Cannot 
Tell

D. Both Slits



Electro
n Source

Each electron 
passes through 
both slits, 
interferes with 
itself, then 
becomes 
localized when 
detected.

The pattern that emerges means there’s a 
higher probability of detecting an 
electron in some locations than others.



What does it MEAN? 
What is matter?

•Article discussion



Different Interpretations
•Copenhagen Interpretation – the act of 
measurement affects the system. QM only 
predicts probabilities of measurements.
•Agnostic interpretation - “Don’t know, don’t 
care.” – “Shut up and calculate.”
•Many-World Interpretation – all possible and 
future histories are real. 



Review of Classical Probability
•Handout Part I
•At least Page 1. May skip Page 2.



Review of Classical Probability
• Toss two dice simultaneously. What is the probability that the sum of the 

results is four?

• 3 possible outcomes: 1 and 3, 2 and 2, or 3 and 1 (treat each dice 

independently)

• Probability for any single outcome is: 1/36 = 1/6 x 1/6.

• Probability that the sum result is four is: P[2,2]+P[1,3]+P[3,1].

• 1/36 + 1/36 + 1/36 = 3/36 = 1/12



Probability Density
•Remainder of Handout

Stopped here – rest of 
lecture continued 
during Class 21



Two Types of Probability 
Distributions
•Discrete
•Continuous



Discrete	Probability	Distribu3ons	
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Discrete	Probability	Distribu3ons	

Flip	a	coin	five	3mes.		There	are	32	possible	outcomes:	
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Can	also	represent	this	in	
terms	of	the	number	of	
Heads	obtained:	

Discrete	Probability	Distribu3ons	
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Can	also	represent	this	in	
terms	of	the	number	of	
Heads	obtained:	

The	probability	P[k]	for	
obtaining	a	specific	
number	of	Heads	(k)	is	
found	by	dividing	
through	by	the	total	
number	of	possible	
outcomes	[32]:	

P[k]	

k	=	#	of	Heads	
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Can	also	represent	this	in	
terms	of	the	number	of	
Heads	obtained:	

The	probability	P[k]	for	
obtaining	a	specific	
number	of	Heads	(k)	is	
found	by	dividing	
through	by	the	total	
number	of	possible	
outcomes	[32]:	

P[k]	

k	=	#	of	Heads	

Discrete	Probability	Distribu3ons	
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*P[k]	is	normalized	



Toss	a	coin	10	3mes:	

P[k]	

Toss	a	coin	10	3mes:	

P[k]	

  P[k ≥ 7] ≈18%

7 70%
10

=

Toss a coin 10 times:



Toss	a	coin	20	3mes:	

P[k]	

Toss	a	coin	20	3mes:	

P[k]	

  P[k ≥14] ≈ 7%

7 14 70%
10 20

= =

Toss a coin 20 times:



Toss	a	coin	100	3mes:	

P[k]	

Toss	a	coin	100	3mes:	

P[k]	

   P[k ≥ 70] ≪  1%

???	

Toss a coin 100 times:

<



µ2σ− σ− σ+ 2σ+3σ− 3σ+

Con3nuous	Probability	Distribu3ons	

x

Central	Limit	Theorem	says	that,	with	more	and	more	coin	tosses,	the	
probability	distribu3on	can	be	described	by	a	con3nuous	func3on:	

Normal	distribu3on	
(or	Gaussian)	

Describes	large	numbers	of	
		random,	independent	
				variables.	

µ2σ− σ− σ+ 2σ+3σ− 3σ+

Con3nuous	Probability	Distribu3ons	

x

Central	Limit	Theorem	says	that,	with	more	and	more	coin	tosses,	the	
probability	distribu3on	can	be	described	by	a	con3nuous	func3on:	

Normal	distribu3on	
(or	Gaussian)	

mean (average)µ =

Describes	large	numbers	of	
		random,	independent	
				variables.	

Continuous Probability Distributions
Central Limit Theorem says that, with more and more coin tosses, the probability 
distribution can be described by a continuous function:

Normal distribution 
(or Gaussian)
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Con3nuous	Probability	Distribu3ons	
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Normaliza3on!!	

[ ] 1P x−∞ < < +∞ =

Continuous Probability Distributions

Normalization!



Con3nuous	Probability	Distribu3ons	

68% within 1σ±:

   
P[µ −σ ≤ x ≤ µ +σ ]= ρ(x) dx

µ−σ

µ+σ

∫ ∼ 0.68

Con3nuous	Probability	Distribu3ons	

68% within 1σ±:

   
P[µ −σ ≤ x ≤ µ +σ ]= ρ(x) dx

µ−σ

µ+σ

∫ ∼ 0.68

Continuous Probability Distributions
=



Con3nuous	Probability	Distribu3ons	

95% within 2σ±:

   
P[µ − 2σ ≤ x ≤ µ + 2σ ]= ρ(x) dx

µ−2σ

µ+2σ

∫ ∼ 0.95

Continuous Probability Distributions
=



Con3nuous	Probability	Distribu3ons	

99.7% within 3σ±:

   
P[µ − 3σ ≤ x ≤ µ + 3σ ]= ρ(x) dx

µ−3σ

µ+3σ

∫ ∼ 0.997

Continuous Probability Distributions
=



Con3nuous	Probability	Distribu3ons	

• 	ρ(x)	is	a	probability	density	(not	a	probability).		We	approximate	
	the	probability	to	obtain	xi	within	a	range	Δx	with:	

	
	
	
• 	The	probability	of	obtaining	a	range	of	values	is	equal	to	the	area	

	under	the	probability	distribu3on	curve	in	that	range:	
	
	

• 	For																																			(discrete	values):	
	
	
• 	For	con3nuous	x:	
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2( ) exp( )x xρ −:

Con3nuous	Probability	Distribu3ons	

2( ) exp( )x xρ −:

Con3nuous	Probability	Distribu3ons	

2( ) exp( )x x x xρ⋅ ⋅ −:
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Con3nuous	Probability	Distribu3ons	
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• 																since										has	even	symmetry	about	x	=	0		0x = ( )xρ

2( ) exp( )x xρ −:

Con3nuous	Probability	Distribu3ons	

2( ) exp( )x x x xρ⋅ ⋅ −:

 ( ) 0x x x dxρ
+∞

−∞
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• 																since										has	even	symmetry	about	x	=	0		0x = ( )xρ

• 																since																has	odd	symmetry	about	x	=	0		0x = ( )x xρ⋅



What	if	the	probability	curve	is	not	normal?	

What	kind	of	system	might	
this	probability	distribu3on	
describe?	

What	if	the	probability	curve	is	not	normal?	

?x =
A) 0	
B) 1/2	
C) 1	
D) Not	defined,	since	there	are	two	places	where	
	 	x	is	most	likely.	

What	kind	of	system	might	
this	probability	distribu3on	
describe?	

What	if	the	probability	curve	is	not	normal?	

?x =
A) 0	
B) 1/2	
C) 1	
D) Not	defined,	since	there	are	two	places	where	
	 	x	is	most	likely.	

What	kind	of	system	might	
this	probability	distribu3on	
describe?	


