
Phys 301 Class 24
Wavepackets, 
Heisenburg Uncertainty
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Superposition
•If               and               are solutions to a wave 
equation, then so is:

•Superposition (linear combination) of two 
waves.

Ψ(𝑥, 𝑡) = Ψ1(𝑥, 𝑡) + Ψ2(𝑥, 𝑡) 



Fourier Series
•A periodic function can be represented by the 
sum of simple sine and/or cosine functions.
•We’ve seen some examples of adding traveling 
waves to make “new” waves:
• Standing Waves
•Beats

•This is true for any periodic (repeating) 
function.



Wave Packets
•Our new representation of a “particle” in “free 
space”.
•Localization to be particle-like
•Oscillation to be wave-like
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Time dimension is animated.
Animation is looped.
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How To Make a Wave 
Packet?
•Handout Parts I and II



When exactly does a wave packet “arrive” at a detector? (e.g., an electron 
on our screen?) There is some uncertainty.

This wave packet “lasts about this long” = Δ𝑡.
This wave packet “lasts for less time.”

About the range of 
frequencies Δ𝑓 needed 
to produce wavepacket. 

Larger Δ𝑓 produces 
smaller Δ𝑡.

Δ𝑓Δ𝑡 ≥ 1



How do these uncertainties of wave properties apply 
to matter? Derivation on board.

Δ𝑥 Δ𝑝𝑥 ≥ ℎ/2
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Plane Waves vs. Wave Packets

For which type of wave are the position (x) and momentum (p) most 
well-defined?

A)  x most well-defined for plane wave, p most well-defined for wave packet.
B)  p most well-defined for plane wave, x most well-defined for wave packet.
C)  p most well-defined for plane wave, x equally well-defined for both.
D)  x most well-defined for wave packet, p equally well-defined for both.
E)  p and x are equally well-defined for both.

Ψ(𝑥, 𝑡) = 𝐴 𝑒xp[𝑖(𝑘𝑥 − 𝜔𝑡)] 

Ψ(𝑥, 𝑡) = ∑ 𝐴𝑛 𝑒xp[𝑖(𝑘𝑛𝑥 − 𝜔𝑛𝑡)]𝑛  



Uncertainty Principle

Δx

Δx
small Δp – only one wavelength

Δx
medium Δp – wave packet made of several waves

large Δp – wave packet made of lots of waves

A Wave
Interpretation:



•Measurements are performed on an ensemble of identically 
prepared systems.

• Distributions of position and momentum values are obtained.
• Uncertainties in position and momentum are defined in terms of 

the standard deviation.

Uncertainty Principle
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What about when we 
“observe” a particle?
•We more precisely determine its location.
•The act of observation localizes the electron.
•We change the wavefunction.



The Implications
•Our knowledge about a particle’s position and 
momentum is inherently uncertain.
•Independent of “experimental uncertainty.”
•The more precisely we know a particle’s 
position, the less precisely we know its 
momentum, and vice versa. 



Matter Waves (Summary)
•Electrons and other particles have wave properties
 (interference)
•When not being observed, electrons are spread out in space
 (delocalized waves)
•When being observed, electrons are found in one place
 (localized particles)
•Particles are described by wave functions:
 (probabilistic, not deterministic)
•Physically, what we measure is
 (probability density for finding a particle in a particular place 

at a particular time)

•Simultaneous measurements of x & p are constrained by the
 Uncertainty Principle:

Ψ(𝑥, 𝑡) 𝜌(𝑥, 𝑡) = |Ψ(𝑥, 𝑡)|2  

∆𝑥∆𝑝𝑥 ≥ ℎ/2 


