Phys 301 Class 27 Finite Potential Wells

Finish Up Correspondence Principle

- •Part IV of handout
- Save Part V for end of class if time

Review: Conditions for $\psi(x)$

- •In order for $|\psi(x)|^2$ to be physically meaningful… $|\psi(x)|^2$
	- $\psi(x)$ must be continuous.
	- $\psi(x) = 0$ where it's impossible for the particle to be.
	- $\psi(x) \to 0$ as $x \to -\infty$ and $x \to +\infty$
	- $\psi(x)$ must be properly normalized such that:

$$
\int_{-\infty}^{+\infty} |\psi(x)|^2 dx = 1
$$

An exception….

- A plane wave is a valid solution
- A "free particle" in which we know nothing about the position over all infinity.

Review: Infinite Potential Well

$$
\frac{d^2\psi(x)}{dx^2} = -\frac{2m}{\hbar^2} [E - U(x)]\psi(x)
$$

For $E > U(x)$, general solution is $\psi(x) = A\sin(kx) + B\cos(kx)$

Apply boundary conditions: if $\psi(x)$ is 0 to the left of 0, then it must also be zero at 0 in order to be continuous. (Also at $L = 0$.)

Consequence: $B = 0$, $k = n\pi/L$ Finally, normalize to find $A = \sqrt{\frac{2}{L}}$ $\psi_n(x) = \begin{cases} V L^{x} & L \end{cases}$, $\psi_n(x) = \begin{cases} V L^{x} & L \end{cases}$

$$
\psi_n(x) = \begin{cases} \sqrt{\frac{2}{L}} \sin \frac{n\pi x}{L}, & 0 \le x \le L \\ 0, & x < 0 \text{ and } x > L \end{cases}
$$

Interpreting Infinite Potential Well

•Plugged solution into Schrödinger equation to find:

$$
E_n = n^2 \frac{\pi^2 \hbar^2}{2mL^2} = n^2 \frac{h^2}{8mL^2}
$$

•Infinite *n*.

Wavefunctions drawn oscillating around a line that represents the relative energy level. But ALL really oscillating around zero!

Recall energy level diagrams? Bohr, spacing?

Now, the Finite Potential Well

$$
\frac{d^2\psi(x)}{dx^2} = -\frac{2m}{\hbar^2} [E - U(x)]\psi(x)
$$

U(*x*)

 U_{0}

A simple, boxy version of the potentials you drew last time.

0 L x

E

• General solution of real exponentials:

proportional to $+\sqrt{\hat{y}}\tilde{x}\tilde{y}$.

in this potential well?

$$
\psi(x) = Ae^{x/\eta} + Be^{-x/\eta}
$$

• What would a classical particle do

• We saw when $E < U(x)$, the curvature of the ψ **q** x **g** is

• Focus on $x > L$: ψ **q** x **g** must approach 0 at infinite \widetilde{x} , so $A = 0$.

Now, the Finite Potential Well

 $d^2\psi(x)$ dx^2 $=-\frac{2m}{\hbar^2}$ $\overline{\hbar^2}$ $[E - U(x)]\psi(x)$

•On the other side, $x < 0$, must be:

 $\psi(x) = \psi_0 e^{x/\eta}$ for $x < 0$

- •Consequence: the wavefunction inside the finite well is more "spread out" than infinite square well. How does this affect energy levels? Closer together; smaller *k*
- How many energy levels are allowed? A finite number

A bit of practice

- •Handout
- •Then back to last class Part V if time