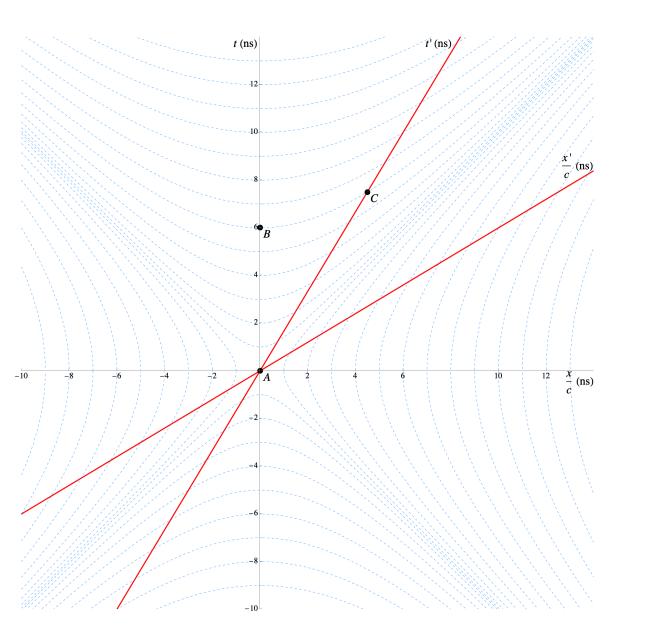
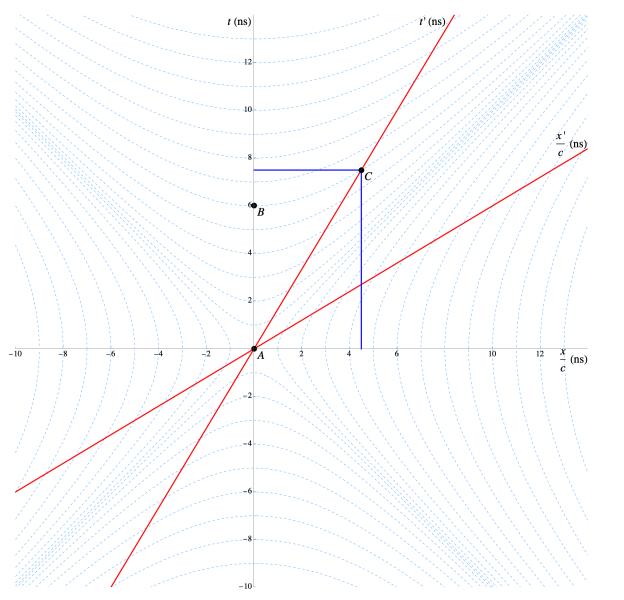
Finish Up Paradoxes

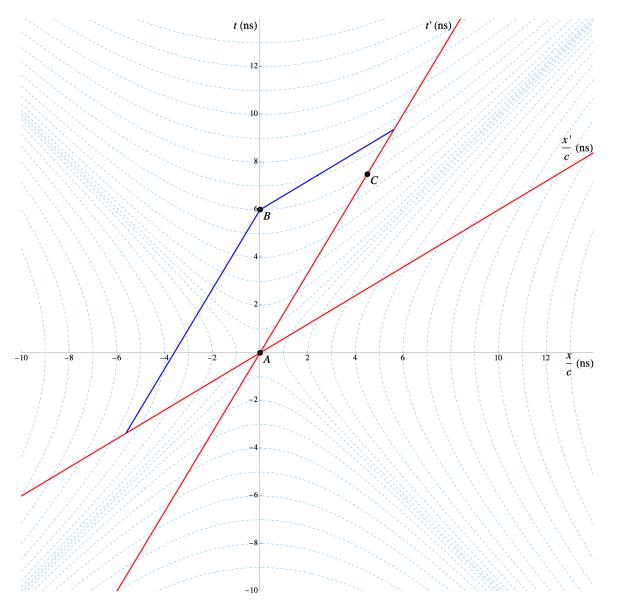
- ~ 15 min. Work on "How can both observers see the other's clock running slow?"
- Follow the hints.





Check with Lorentz transformations:

Event C in S frame: $x = \gamma(x' + vt') = 1.25 \left(0 + \frac{3}{5}(6 \text{ s})\right) = 4.5 \text{ s}$ $t = \gamma \left(t' + \frac{v}{c^2}x'\right) = 1.25 \left(6 \text{ s} + \frac{3}{5}(0)\right) = 7.5 \text{ s}$



Check with Lorentz transformations:

Event B in S' frame : $x' = \gamma(x - vt) = 1.25 \left(0 - \frac{3}{5}(6 \text{ s}) \right) = -4.5 \text{ s}$ $t' = \gamma \left(t - \frac{v}{c^2} x' \right) = 1.25 \left(6 \text{ s} - \frac{3}{5}(0) \right) = 7.5 \text{ s}$

Warm-Up Problem: Lorentz Transformations On Handout

The clock travels from A to B with speed v. Assume A is at position x = 0, then B is at position x = vt, $t = (t_1 - t_0)$

Use this to substitute *x* in the Lorentz transformation:

$$= \gamma \left(t - \frac{v^2 t}{c^2} \right)$$
$$= \gamma t \left(1 - \frac{v^2}{c^2} \right) = \frac{t}{\gamma}$$

The moving clock shows the proper time interval!!

 \rightarrow We get exactly the expression of the time dilation!

t'

Phys 301 Modern Physics

0

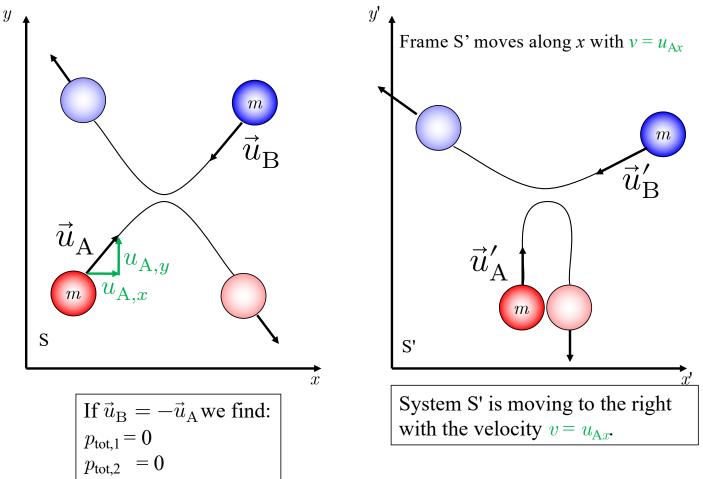
Class 6: Momentum and Energy

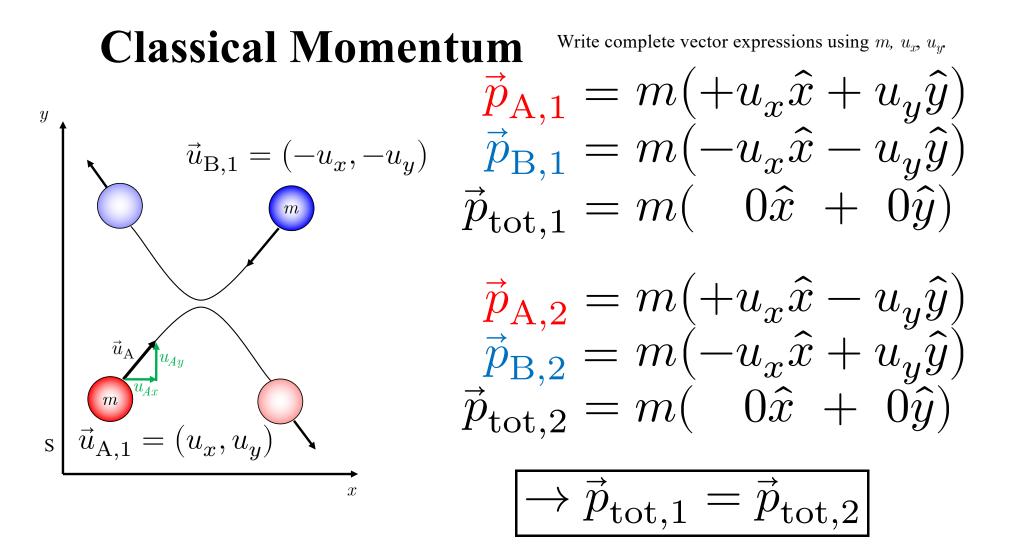
Conservation of Momentum: Classical $\vec{p} = m\vec{u}$

In absence of external forces the total momentum is conserved (Law of conservation of momentum):

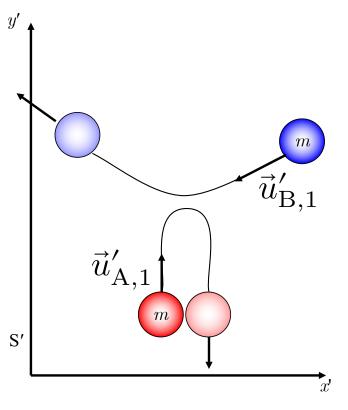
$$\sum_{i=1}^{n} \vec{p}_i = \text{const.}$$

Conservation of Momentum





Using Galilean Transformations



Write expressions using the same u_x , u_y as before.

$$\begin{aligned} \vec{p}_{\mathrm{A},1}' &= m \left(\begin{array}{c} 0 \hat{x} \\ + u_y \hat{y} \end{array} \right) \\ \vec{p}_{\mathrm{B},1}' &= m \left(-2u_x \hat{x} - u_y \hat{y} \right) \\ \vec{p}_{\mathrm{tot},1}' &= m \left(-2u_x \hat{x} + 0 \hat{y} \right) \end{aligned}$$

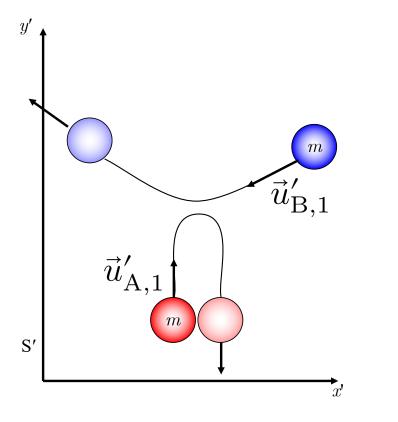
$$\begin{split} \vec{p}_{\mathrm{A,2}}' &= m \begin{pmatrix} 0\hat{x} & -u_y\hat{y} \end{pmatrix} \\ \vec{p}_{\mathrm{B,2}}' &= m \begin{pmatrix} -2u_x\hat{x} + u_y\hat{y} \end{pmatrix} \\ \vec{p}_{\mathrm{tot,2}}' &= m \begin{pmatrix} -2u_x\hat{x} + u_y\hat{y} \end{pmatrix} \end{split}$$

$$\rightarrow \vec{p}'_{\text{tot},1} = \vec{p}'_{\text{tot},2}$$

Velocity Transformation (3D)

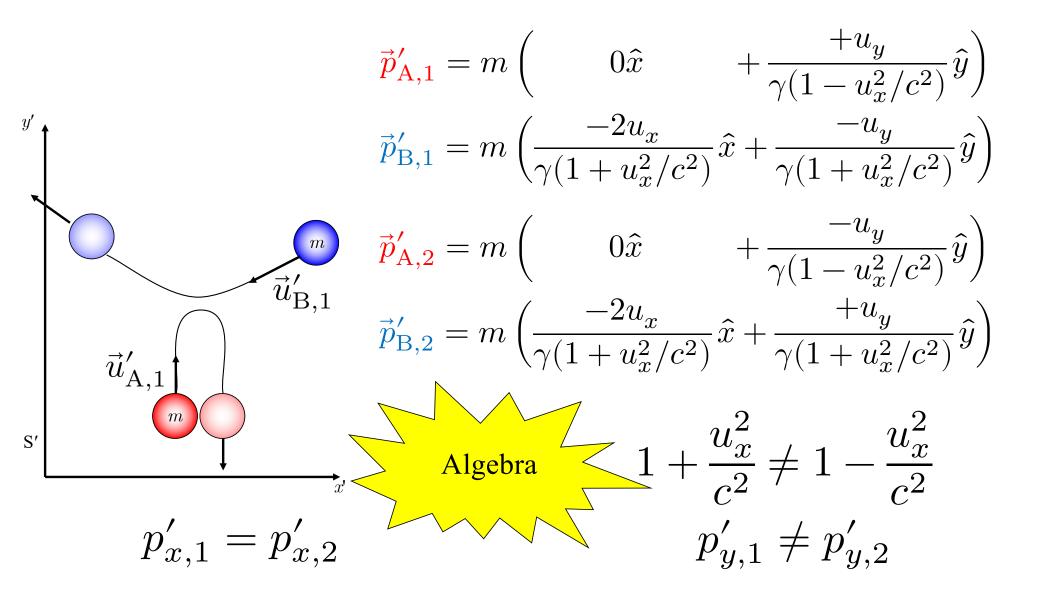
Classical:	Relativistic:
$u_x' = u_x - v$	$u'_x = \frac{u_x - v}{1 - u_x v/c^2}$
$u_y' = u_y$	$u_y' = \frac{u_y}{\gamma(1-u_xv/c^2)}$
$u'_z = u_z$	$u_z' = \frac{u_z}{\gamma(1-u_xv/c^2)}$

Lorentz Transformation



Use:
$$u'_x = \frac{u_x - v}{1 - u_x v/c^2}$$
$$u'_y = \frac{u_y}{\gamma(1 - u_x v/c^2)}$$

Does *initial total momentum* equal *final total momentum*?



Qualifications for New Definition of Momentum

1. At low velocities the new definition of \vec{p} should match the classical definition of momentum.

2. The total momentum $(\Sigma \vec{p}_i)$ of an isolated system of bodies is conserved in **all** inertial frames.

Relativistic Momentum

Classical definition: $\vec{p} = m \frac{d\vec{r}}{dt}$

- Measure the mass 'm' in its rest-frame ('proper mass' or 'rest mass').
- Agree on the same value for 'm' in all frames.
- Take derivative w.r.t. proper time.

Relativistic definition:
$$\vec{p} = m \frac{d\vec{r}}{dt_{\text{proper}}} = m \frac{d\vec{r}}{d\tau}$$

Relativistic Momentum

$$dt = \gamma_p d\tau$$

$$\gamma_p = \frac{1}{\sqrt{1 - u_p^2/c^2}}$$

 Subscript "p" indicates "Lorentz factor of particle" – use speed of particle.

$$\vec{p} = \gamma_p m \frac{d\vec{r}}{dt} = \gamma_p m \vec{u}$$

By How Much does Relativistic Formula Change Momentum? Handout **Part I**

Relativistic Momentum

$$\begin{array}{ccc} & & & p = \gamma_p m u \\ & & & & \\ \bullet & & & \bullet \end{array} \end{array} \\ \bullet & & \bullet & \bullet \end{array}$$

Particle A has half the mass and twice the speed of particle B. If the particles' momenta are p_A and p_B , then

a)
$$p_A > p_B$$

b) $p_A = p_B$
c) $p_A < p_B$

 γ_p is bigger for the faster particle.

Relativistic Force: Handout Part II

Consequence of Lorentz factor: nothing can be accelerated past speed of light.

