Phys 301 Modern Physics

Ο

Class 7: Energy/Momentum Conservation, 4-Vectors, Causality

Relativistic Force: Handout Part II

Consequence of Lorentz factor: nothing can be accelerated past speed of light.

A New Definition for Energy

1. At low velocity, the value E of the new definition should match the classical definition.

$$W_{12} = \int_{1}^{2} \vec{F} \cdot d\vec{s} = K_2 - K_1$$
$$K = \frac{p^2}{2m}$$

2. The total energy (ΣE) of an isolated system of bodies should be conserved in all inertial frames.

We will not go through the derivations but will practice applications.

Total Energy

There is energy associated with mass itself: rest energy E_0 Rest energy $E_0 = mc^2$ is an INVARIANT quantity.

$$E = K + mc^2 = \gamma_p mc^2$$

This definition of the relativistic *mass-energy E* fulfills the condition of conservation of total energy. (Not proven here)

Kinetic Energy
$$E = K + mc^2 = \gamma_p mc^2$$

The relativistic kinetic energy *K* of a particle with a rest mass *m* is:

$$K=\gamma_p mc^2-mc^2=(\gamma_p-1)mc^2$$

<u>Note:</u> This is very different from the classical $K = \frac{1}{2}mu^2$

Relativistic Kinetic Energy: Handout Part III

For slow velocities, the relativistic energy equation gives the same value as the classical equation! Remember the binomial approximation for γ_p : $\gamma_p \approx 1 + \frac{1}{2} \frac{u^2}{c^2}$

$$\begin{split} \rightarrow K &= \gamma_p mc^2 - mc^2 \\ &\approx mc^2 + \frac{1}{2}mc^2\frac{u^2}{c^2} - mc^2 \\ &\approx \frac{1}{2}mu^2 \end{split}$$

Which graph best represents the Discuss: What should *E* be when u = 0? What should *E* be when u = verytotal energy of a particle (particle's very fast? mass m > 0) as a function of its E $=\gamma_n mc^2 = K + mc^2$ velocity *u*, in special relativity? Another way to solve: What is the shape of γ_p as a function of speed? a) b) Ξ Ξ cu0 cud) \mathbf{C}

 Ξ

С

E

0

c

11

• What is the rest energy of a 100 g ball?

$$E_0 = mc^2 = (0.1 \text{ kg}) \left(3.0 \times 10^8 \frac{\text{m}}{\text{s}}\right)^2$$

$$= 9.0 \times 10^{15} \text{ J}$$

•What is its kinetic energy if moving at 3 m/s?

$$\begin{split} K &= \frac{1}{2} m u^2 = (0.1 \text{ kg}) \left(3 \frac{\text{m}}{\text{s}} \right)^2 \\ &= 0.45 \text{ J} \end{split}$$

Wait... if rest energy is SO BIG... How did we not mess up Physics 211?

Equivalence of Mass and Energy

$$\stackrel{+u}{\longrightarrow} \stackrel{-u}{\longleftarrow} \stackrel{-u}{\to} \stackrel$$

Violates Conservation of Energy!

$$E_{\rm tot,2} = Mc^2 = 2K + 2mc^2 = E_{\rm tot,1}$$

We find that the total mass M of the final system is bigger than the sum of the masses of the two parts! M > 2m. Potential energy inside an object contributes to its mass!!!

How does nuclear power work?

- Nuclei: neutrons and protons
- Strong force
- The potential energy associated with the force keeping them together = binding energy $E_{\rm B.}$
- Total rest energy of particle equals the sum of the rest energy of all constituents minus the total binding energy $E_{\rm B}$:

$$Mc^2 = \Sigma (m_i c^2) - E_B$$

Mass per nucleon

Important Relation

Total energy of an object: $E = \gamma_p mc^2$

Relativistic momentum of an object: $\vec{p} = \gamma_p m \vec{u}$

Energy – momentum relation: $E^2 = (pc)^2 + (mc^2)^2$

Momentum of a massless particle:p = E/cVelocity of a massless particle:u = c

$$\vec{R} = \begin{bmatrix} ct \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} ct \\ \vec{r} \end{bmatrix} \qquad \vec{P} = \begin{bmatrix} E \\ p_x c \\ p_y c \\ p_z c \end{bmatrix} = \begin{bmatrix} E \\ \vec{p} c \end{bmatrix}$$

- Spacetime 4-vector
- Relationship defines one invariant quantity: spacetime interval.

• Relationship defines other invariant quantity: rest mass energy.

Energy – momentum relation:

$$E^2 - (pc)^2 = (mc^2)^2$$

$$(c\Delta t)^2 - (\Delta x)^2 = (\Delta s)^2$$

The Lorentz Transformation is a Matrix

$$\begin{bmatrix} ct' \\ x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} \gamma & -\beta\gamma & 0 & 0 \\ -\beta\gamma & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} ct \\ x \\ y \\ z \end{bmatrix}$$

$$\begin{array}{ccc} ct' = \gamma(ct - \beta x) & \longrightarrow & t' = \gamma(t - v/c^2 x) \\ x' = \gamma(-\beta ct + x) & \longrightarrow & x' = \gamma(x - vt) \end{array}$$

Conservation of 4-Momentum: Handout

What is causality?

- •Causally connected events *must* happen in a certain order in time.
- •Event being caused must follow event that causes it.
- •...in all reference frames.

Here is an event in spacetime.

Any light signal that passes through this event has the dashed world lines. These identify the '*light cone*' of this event.

Now we have two events A and B as shown on the left.

The space-time interval $(\Delta s)^2$ of these two events is:

A) PositiveB) NegativeC) Zero

Imagine you are in a rocketship moving past this reference frame. According to you, the space-time interval $(\Delta s)^2$ of these two events is:

A) Positive
B) Negative
C) Zero
D) Cannot Be
Determined

 $(\Delta s)^2$ is invariant under Lorentz transformation.

Which statement is true?

- A) Event A could cause Event B.
- B) Event B could cause Event A.
- C) Both answers above.
- D) Neither answer above.

For A to cause B, "information" would have to travel faster than the speed of light.

1) For each shaded region: What is the value of $(\Delta s)^2$? 2) Does each shaded region contain events that can cause A, events that can be caused by A, or events that are causally unconnected?

 $(\Delta s)^2 > 0$: Time-like events $(A \rightarrow D)$ There exists a frame where the two events could happen in the same place

 $(\Delta s)^2 < 0$: **Space-like events** (A \rightarrow B) There exists a frame where the two events could be simultaneous.

 $(\Delta s)^2 = 0$: Light-like events (A \rightarrow C)