To uniquely determine a wave, $\psi(x,t)$, we know we need 2 constants.

 $\Rightarrow \psi(x,t)$ will be determined by a 2nd order differential equation.

 $\psi(x,t)$ has 2 independent variables, (x,t).

⇒ the wave equation will be a partial differential equation, PDE.

We know a function that describes a wave or wave pulse has to be in the form:

$$\psi(x,t) = f(x-vt)$$
$$= f(x')$$

We know a function that describes a wave or wave pulse has to be in the form:

$$\psi(x,t) = f(x-vt)$$
$$= f(x')$$

$$\frac{\partial x'}{\partial x}$$

We know a function that describes a wave or wave pulse has to be in the form:

$$\psi(x,t) = f(x-vt)$$
$$= f(x')$$

$$\frac{\partial x'}{\partial x} = \frac{\partial}{\partial x} (x - vt)$$

We know a function that describes a wave or wave pulse has to be in the form:

$$\psi(x,t) = f(x-vt)$$
$$= f(x')$$

$$\frac{\partial x'}{\partial x} = \frac{\partial}{\partial x} (x - vt) = \frac{\partial x}{\partial x} - v \frac{\partial t}{\partial x}$$

We know a function that describes a wave or wave pulse has to be in the form:

$$\psi(x,t) = f(x-vt)$$
$$= f(x')$$

$$\frac{\partial x'}{\partial x} = \frac{\partial}{\partial x} (x - vt) = \frac{\partial x}{\partial x} - v \frac{\partial t}{\partial x} = 1$$

We know a function that describes a wave or wave pulse has to be in the form:

$$\psi(x,t) = f(x-vt)$$
$$= f(x')$$

$$\frac{\partial x'}{\partial x} = \frac{\partial}{\partial x} (x - vt) = \frac{\partial x}{\partial x} - v \frac{\partial t}{\partial x} = 1$$

$$\frac{\partial x'}{\partial t} = \frac{\partial}{\partial t} (x - vt) = \frac{\partial x}{\partial t} - v \frac{\partial t}{\partial t} = -v$$

Just for grins, let's find
$$\frac{\partial^2 \psi(x,t)}{\partial x^2}$$
 and $\frac{\partial^2 \psi(x,t)}{\partial t^2}$, and see what turns up. $\frac{\partial \psi(x,t)}{\partial x}$

$$\frac{\partial \psi(x,t)}{\partial x} = \frac{\partial f}{\partial x}$$

$$\frac{\partial \psi(x,t)}{\partial x} = \frac{\partial f}{\partial x} = \frac{\partial f}{\partial x'} \frac{\partial x'}{\partial x}$$

$$\frac{\partial \psi(x,t)}{\partial x} = \frac{\partial f}{\partial x} = \frac{\partial f}{\partial x'} \frac{\partial x'}{\partial x} = \frac{\partial f}{\partial x'}$$

$$\frac{\partial \psi(x,t)}{\partial x} = \frac{\partial f}{\partial x} = \frac{\partial f}{\partial x'} \frac{\partial x'}{\partial x} = \frac{\partial f}{\partial x'}$$

$$\frac{\partial}{\partial x} \left(\frac{\partial \psi(x,t)}{\partial x} \right)$$

$$\frac{\partial \psi(x,t)}{\partial x} = \frac{\partial f}{\partial x} = \frac{\partial f}{\partial x'} \frac{\partial x'}{\partial x} = \frac{\partial f}{\partial x'}$$

$$\frac{\partial}{\partial x} \left(\frac{\partial \psi(x, t)}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right)$$

$$\frac{\partial \psi(x,t)}{\partial x} = \frac{\partial f}{\partial x} = \frac{\partial f}{\partial x'} \frac{\partial x'}{\partial x} = \frac{\partial f}{\partial x'}$$

$$\frac{\partial}{\partial x} \left(\frac{\partial \psi(x, t)}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x'} \right)$$

$$\frac{\partial \psi(x,t)}{\partial x} = \frac{\partial f}{\partial x} = \frac{\partial f}{\partial x'} \frac{\partial x'}{\partial x} = \frac{\partial f}{\partial x'}$$

$$\frac{\partial}{\partial x} \left(\frac{\partial \psi(x, t)}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x'} \right) = \frac{\partial}{\partial x'} \left(\frac{\partial f}{\partial x'} \right) \frac{\partial x'}{\partial x}$$

$$\frac{\partial \psi(x,t)}{\partial x} = \frac{\partial f}{\partial x} = \frac{\partial f}{\partial x'} \frac{\partial x'}{\partial x} = \frac{\partial f}{\partial x'}$$

$$\frac{\partial}{\partial x} \left(\frac{\partial \psi(x, t)}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x'} \right) = \frac{\partial}{\partial x'} \left(\frac{\partial f}{\partial x'} \right) \frac{\partial x'}{\partial x} = \frac{\partial^2 f}{\partial x'^2}$$

$$\frac{\partial \psi(x,t)}{\partial x} = \frac{\partial f}{\partial x} = \frac{\partial f}{\partial x'} \frac{\partial x'}{\partial x} = \frac{\partial f}{\partial x'}$$

$$\frac{\partial}{\partial x} \left(\frac{\partial \psi(x, t)}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x'} \right) = \frac{\partial}{\partial x'} \left(\frac{\partial f}{\partial x'} \right) \frac{\partial x'}{\partial x} = \frac{\partial^2 f}{\partial x'^2}$$

$$\frac{\partial \psi(x,t)}{\partial t}$$

$$\frac{\partial \psi(x,t)}{\partial x} = \frac{\partial f}{\partial x} = \frac{\partial f}{\partial x'} \frac{\partial x'}{\partial x} = \frac{\partial f}{\partial x'}$$

$$\frac{\partial}{\partial x} \left(\frac{\partial \psi(x, t)}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x'} \right) = \frac{\partial}{\partial x'} \left(\frac{\partial f}{\partial x'} \right) \frac{\partial x'}{\partial x} = \frac{\partial^2 f}{\partial x'^2}$$

$$\frac{\partial \psi(x,t)}{\partial t} = \frac{\partial f}{\partial t}$$

$$\frac{\partial \psi(x,t)}{\partial x} = \frac{\partial f}{\partial x} = \frac{\partial f}{\partial x'} \frac{\partial x'}{\partial x} = \frac{\partial f}{\partial x'}$$

$$\frac{\partial}{\partial x} \left(\frac{\partial \psi(x, t)}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x'} \right) = \frac{\partial}{\partial x'} \left(\frac{\partial f}{\partial x'} \right) \frac{\partial x'}{\partial x} = \frac{\partial^2 f}{\partial x'^2}$$

$$\frac{\partial \psi(x,t)}{\partial t} = \frac{\partial f}{\partial t} = \frac{\partial f}{\partial x'} \frac{\partial x'}{\partial t}$$

$$\frac{\partial \psi(x,t)}{\partial x} = \frac{\partial f}{\partial x} = \frac{\partial f}{\partial x'} \frac{\partial x'}{\partial x} = \frac{\partial f}{\partial x'}$$

$$\frac{\partial}{\partial x} \left(\frac{\partial \psi(x, t)}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x'} \right) = \frac{\partial}{\partial x'} \left(\frac{\partial f}{\partial x'} \right) \frac{\partial x'}{\partial x} = \frac{\partial^2 f}{\partial x'^2}$$

$$\frac{\partial \psi(x,t)}{\partial t} = \frac{\partial f}{\partial t} = \frac{\partial f}{\partial x'} \frac{\partial x'}{\partial t} = -v \frac{\partial f}{\partial x'}$$

$$\frac{\partial \psi(x,t)}{\partial x} = \frac{\partial f}{\partial x} = \frac{\partial f}{\partial x'} \frac{\partial x'}{\partial x} = \frac{\partial f}{\partial x'}$$

$$\frac{\partial}{\partial x} \left(\frac{\partial \psi(x, t)}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x'} \right) = \frac{\partial}{\partial x'} \left(\frac{\partial f}{\partial x'} \right) \frac{\partial x'}{\partial x} = \frac{\partial^2 f}{\partial x'^2}$$

$$\frac{\partial \psi(x,t)}{\partial t} = \frac{\partial f}{\partial t} = \frac{\partial f}{\partial x'} \frac{\partial x'}{\partial t} = -v \frac{\partial f}{\partial x'}$$

$$\frac{\partial}{\partial t} \left(\frac{\partial \psi(x,t)}{\partial t} \right)$$

$$\frac{\partial \psi(x,t)}{\partial x} = \frac{\partial f}{\partial x} = \frac{\partial f}{\partial x'} \frac{\partial x'}{\partial x} = \frac{\partial f}{\partial x'}$$

$$\frac{\partial}{\partial x} \left(\frac{\partial \psi(x, t)}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x'} \right) = \frac{\partial}{\partial x'} \left(\frac{\partial f}{\partial x'} \right) \frac{\partial x'}{\partial x} = \frac{\partial^2 f}{\partial x'^2}$$

$$\frac{\partial \psi(x,t)}{\partial t} = \frac{\partial f}{\partial t} = \frac{\partial f}{\partial x'} \frac{\partial x'}{\partial t} = -v \frac{\partial f}{\partial x'}$$

$$\frac{\partial}{\partial t} \left(\frac{\partial \psi(x, t)}{\partial t} \right) = \frac{\partial}{\partial t} \left(\frac{\partial f}{\partial t} \right)$$

$$\frac{\partial \psi(x,t)}{\partial x} = \frac{\partial f}{\partial x} = \frac{\partial f}{\partial x'} \frac{\partial x'}{\partial x} = \frac{\partial f}{\partial x'}$$

$$\frac{\partial}{\partial x} \left(\frac{\partial \psi(x, t)}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x'} \right) = \frac{\partial}{\partial x'} \left(\frac{\partial f}{\partial x'} \right) \frac{\partial x'}{\partial x} = \frac{\partial^2 f}{\partial x'^2}$$

$$\frac{\partial \psi(x,t)}{\partial t} = \frac{\partial f}{\partial t} = \frac{\partial f}{\partial x'} \frac{\partial x'}{\partial t} = -v \frac{\partial f}{\partial x'}$$

$$\frac{\partial}{\partial t} \left(\frac{\partial \psi(x, t)}{\partial t} \right) = \frac{\partial}{\partial t} \left(\frac{\partial f}{\partial t} \right) = \frac{\partial}{\partial t} \left(-v \frac{\partial f}{\partial x'} \right)$$

$$\frac{\partial \psi(x,t)}{\partial x} = \frac{\partial f}{\partial x} = \frac{\partial f}{\partial x'} \frac{\partial x'}{\partial x} = \frac{\partial f}{\partial x'}$$

$$\frac{\partial}{\partial x} \left(\frac{\partial \psi(x, t)}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x'} \right) = \frac{\partial}{\partial x'} \left(\frac{\partial f}{\partial x'} \right) \frac{\partial x'}{\partial x} = \frac{\partial^2 f}{\partial x'^2}$$

$$\frac{\partial \psi(x,t)}{\partial t} = \frac{\partial f}{\partial t} = \frac{\partial f}{\partial x'} \frac{\partial x'}{\partial t} = -v \frac{\partial f}{\partial x'}$$

$$\frac{\partial}{\partial t} \left(\frac{\partial \psi(x, t)}{\partial t} \right) = \frac{\partial}{\partial t} \left(\frac{\partial f}{\partial t} \right) = \frac{\partial}{\partial t} \left(-v \frac{\partial f}{\partial x'} \right) = \frac{\partial}{\partial x'} \left(-v \frac{\partial f}{\partial x'} \right) \frac{\partial x'}{\partial t}$$

$$\frac{\partial \psi(x,t)}{\partial x} = \frac{\partial f}{\partial x} = \frac{\partial f}{\partial x'} \frac{\partial x'}{\partial x} = \frac{\partial f}{\partial x'}$$

$$\frac{\partial}{\partial x} \left(\frac{\partial \psi(x, t)}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x'} \right) = \frac{\partial}{\partial x'} \left(\frac{\partial f}{\partial x'} \right) \frac{\partial x'}{\partial x} = \frac{\partial^2 f}{\partial x'^2}$$

$$\frac{\partial \psi(x,t)}{\partial t} = \frac{\partial f}{\partial t} = \frac{\partial f}{\partial x'} \frac{\partial x'}{\partial t} = -v \frac{\partial f}{\partial x'}$$

$$\frac{\partial}{\partial t} \left(\frac{\partial \psi(x, t)}{\partial t} \right) = \frac{\partial}{\partial t} \left(\frac{\partial f}{\partial t} \right) = \frac{\partial}{\partial t} \left(-v \frac{\partial f}{\partial x'} \right) = \frac{\partial}{\partial x'} \left(-v \frac{\partial f}{\partial x'} \right) \frac{\partial x'}{\partial t} = v^2 \frac{\partial^2 f}{\partial x'^2}$$

So
$$\frac{\partial^2 f}{\partial x^{12}} = \frac{\partial^2 \psi(x,t)}{\partial x^2},$$

and
$$\frac{\partial^2 f}{\partial x'^2} = \frac{1}{v^2} \frac{\partial^2 \psi(x,t)}{\partial t^2}.$$

$$\Rightarrow \frac{\partial^2 \psi(x,t)}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 \psi(x,t)}{\partial t^2}$$