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1) Review of previous concepts 

 
(a) For the ground state 𝜓0(𝑥) of the harmonic oscillator, what is the probability of finding the 

particle outside of the classically allowed region? Hint: Classically, the energy of an oscillator 
is 𝐸 = 1

2 𝑚𝜔2𝑎2, where a is the amplitude. So, the classically allowed region for an oscillator 
of energy E extends from 𝑥 = −√2𝐸 𝑚𝜔2⁄  to 𝑥 = +√2𝐸 𝑚𝜔2⁄ . You'll need the help of a 
computer to do this integral, and you'll just need a decimal answer. It will be easiest to do if 
you define your integrand and limits of integration in terms of a new variable given in 
Equation 2.72, instead of as a function of x. For your final step, get to the point where 
𝑃 = 2√

𝜋 ∫ 𝑒−𝜉2𝑑𝜉∞
1

, then use Wolfram Alpha or Mathematica. Answer: 0.157. 
 

(b) Examine Figure 2.7 from Griffiths. Should the probability that you just calculated increase, 
decrease, or stay the same as n increases? Is this consistent with the correspondence principle; 
why or why not? 

 
 This is a nice application of some of our concepts from Chapter 1 (using a probability density to 

find probabilities of finding a measurement in a certain range), and a comparison of classical and 
quantum examples. 

 
 Section 2.5 is a nice bridge between Sections 2.4 and 2.6. The solution to the Delta Potential Well provided 
us with an understanding of reflection and transmission coefficients, which we'll need to understand the 
Finite Square Well in 2.6, where the mathematics is more complicated. Section 2.5 also introduced (or re-
introduced) use to the Delta function, which we'll use here to continue analyzing the concept of 
“momentum space” that we developed in Section 2.4. So, though this homework doesn't explicitly focus on 
the solution we developed in Section 2.5, it allows us to expand upon Section 2.4 and preview Section 2.6. 
 
 
2) Properties of Delta Functions 

 
(a) Using Plancherel's theorem, show that we can write the Dirac Delta function as 

𝛿(𝑥) = 1
2𝜋 ∫ 𝑒𝑖𝑘𝑥𝑑𝑘+∞

−∞
. Hint: Find the Fourier transform of 𝛿(𝑥). 

 
(b) Define 𝜃(𝑥) to be a step function: 

 
𝜃(𝑥) = {1, 𝑥 > 0

0, 𝑥 < 0 

 
 Show that 𝛿(𝑥) = 𝑑𝜃 𝑑𝑥⁄ . Hints: Delta functions really only make sense under integral signs. 

Two expressions (D1(x) and D2(x)) involving delta functions are equal if: 
 

∫ 𝑓(𝑥)𝐷1(𝑥)𝑑𝑥
+∞

−∞
= ∫ 𝑓(𝑥)𝐷2(𝑥)𝑑𝑥

+∞

−∞
 (1) 

 
 You will need to use integration by parts. 
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3) Momentum-Space Wave Functions 

 Although some people casually call 𝜙(𝑘) a “momentum distribution”, we should be careful. 
Remembering that 𝑝 = ℏ𝑘, I claim the momentum distribution is really 

 

Φ(𝑝) = 1
ℏ

𝜙(𝑘) (2) 

 

 Convince me that Φ(𝑝) is properly normalized (and consequently, why 1 ℏ⁄  is needed) by showing 
that 

 

∫ Φ∗(𝑝)Φ(𝑝)𝑑𝑝
+∞

−∞
= 1 (3) 

 

 You should assume only that ∫ Ψ∗(𝑥)Ψ(𝑥)𝑑𝑥+∞
−∞

= 1. You will need the expression from 
Problem 2a to simplify the triple integral you get when you expand 𝜙(𝑘) using Griffiths equation 
2.104. Don't forget 𝑑𝑝 = ℏ𝑑𝑘. 

 
4) Expectation Values in Momentum Space (continuation of the previous problem) 

 If you define 𝑥̂ = 𝑖ℏ 𝜕
𝜕𝑝, show that 

 

∫ Φ∗(𝑝)𝑥Φ̂(𝑝)𝑑𝑝
+∞

−∞
= 〈𝑥〉 (4) 

 
 You'll need the same expressions/substitutions as I listed at the end of the previous problem. 
 

Notes on the meaning of this result: pay attention to the symmetry of what we're showing here. 
Before, we had: 

 

〈𝑥〉 = ∫ Ψ∗(𝑥)𝑥Ψ̂(𝑥)𝑑𝑥
+∞

−∞
 where 𝑥̂ = 𝑥 (5) 

〈𝑝〉 = ∫ Ψ∗(𝑥)𝑝̂Ψ(𝑥)𝑑𝑥
+∞

−∞
 where 𝑝̂ = −𝑖ℏ 𝜕

𝜕𝑥
 (6) 

 
Now we have: 

 

〈𝑥〉 = ∫ Φ∗(𝑝)𝑥Φ̂(𝑝)𝑑𝑝
+∞

−∞
 where 𝑥̂ = 𝑖ℏ 𝜕

𝜕𝑝
 (7) 

 
It looks like when we swap Ψ(𝑥) with Φ(𝑝), we also swap operators, so by symmetry, we 
will have: 

 

〈𝑝〉 = ∫ Φ∗(𝑝)𝑝̂Φ(𝑝)𝑑𝑝
+∞

−∞
 where 𝑝̂ = 𝑝 (8) 

 
Φ(𝑝) plays the same role as Ψ(𝑥) does. It normalizes like Ψ(𝑥), and it contains information about 
the system (expectation values, etc.) just like Ψ(𝑥). Since it is written as a function of p instead of 
x, it is called a momentum-space wave function, with |Φ(𝑝)|2 being the momentum-space 
probability density (∫ |Φ(𝑝)|2𝑑𝑝𝑝𝑏

𝑝𝑎
 gives the probability of finding the particle with a momentum p 

between pa and pb). 


