Our problems here focus on using (and making physical sense of) the results of the derivation of ψ_{nlm} for the hydrogen atom presented in Section 4.2. Use tables of integrals, especially one from the back cover of the book, or WolframAlpha/Mathematica; don't spend your time on the nitty-gritty of integration.

1) Ground State of Hydrogen I

- (a) Use Griffith's illustrations or our Mathematica visualization notebook to describe the probability density of the ground state of hydrogen, in words.
- (b) What is the difference between "the expectation value of r" and "the most probable value of r," in general?
- (c) What is the *most probable value* of r in the ground state of hydrogen? The answer is not zero! *Hints:* Recall that the probability for finding a particle in a certain volume is $|\psi|^2 d^3 \vec{r}$, where $d^3 \vec{r} = r^2 \sin \theta \, dr d\theta d\phi$. Find the probability that the particle will be found between r and r + dr. Find the location r where this function is maximized. Express your answer in terms of the Bohr radius, $a \equiv \frac{4\pi\epsilon_0 \hbar^2}{me^2}$.

2) Ground State of Hydrogen II

- (a) Find $\langle r \rangle$ and $\langle r^2 \rangle$ for an electron in the ground state of hydrogen. Express your answer in terms of the Bohr radius, $a \equiv \frac{4\pi\epsilon_0 h^2}{mc^2}$.
- (b) Find $\langle x \rangle$ and $\langle x^2 \rangle$ for an electron in the ground state of hydrogen. *Hint:* This requires no new integration. Use the fact that $r^2 = x^2 + y + z^2$, and exploit the symmetry of the ground state. Explain.

3) Excited State of Hydrogen

- (a) Normalize R_{21} from Equation 4.83. Of course, you can check your answer by comparison to Table 4.7.
- (b) Construct the wavefunction for the stationary state n = 2, l = 1, m = 1.
- (c) Use Griffith's illustrations or our Mathematica visualization notebook to describe the probability density of this excited state, in words.
- (d) Find $\langle x^2 \rangle$ for this state. Recall: $x = r \sin \theta \cos \phi$.

4) Superposition

A hydrogen atom starts out in the following linear combination of the stationary states n = 2, l = 1, m = 1 and n = 2, l = 1, m = -1:

$$\Psi(\vec{r},0) = \frac{1}{\sqrt{2}}(\psi_{211} + \psi_{21-1}) \tag{1}$$

- (a) Construct $\Psi(\vec{r},t)$. Note you already constructed ψ_{211} for the problem above. Simplify as much as you can.
- (b) Find the expectation value of the potential energy, $\langle V \rangle$. Does it depend on time? Give both the formula and the actual number, in electron volts.