Cylindrical Coordinates 2
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Unit Vectors

The unit vectorsin the cylindrical coordinate system are functions of position. It is convenient to express them in terms of
the cylindrical coordinates and the unit vectors of the rectangular coordinate system which are not themselves functions of

position.
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Variations of unit vectors with the coordinates

Using the expressions obtained above it is easy to derive the following handy relationships:
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Path increment
Wewill have many uses for the path increment dr’ expressed in cylindrical coordinates:
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Time derivatives of the unit vectors
Wewill also have many uses for the time derivatives of the unit vectors expressed in cylindrical coordinates:
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Velocity and Acceleration

The velocity and acceleration of a particle may be expressed in cylindrical coordinates by taking into account the associated
rates of change in the unit vectors:
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The del operator from the definition of the gradient

Any (static) scalar field u may be considered to be afunction of the cylindrical coordinates p, ¢, and z. Thevalue of u

changes by an infinitesimal amount du when the point of observation is changed by dr . That change may be determined
from the partial derivatives as
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But we also define the gradient in such away as to obtain the result
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and we demand that thishold for any choice of dp, d¢ and dz. Thus,
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from which we find




Divergence

The divergence V- Aiscaried out teki ng into account, once again, that the unit vectors themselves are functions of the
coordinates. Thus, we have
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where the derivatives must be taken before the dot product so that
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Curl

Thecurl Vx A isalso carried out taki ng into account that the unit vectors themselves are functions of the coordinates.
Thus, we have

Y.
VxA:[p%+%8—¢+z—J (App+A¢,¢+ Atz)
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With the help of the partial derivatives previously obtained, we find
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Laplacian

The Laplacian is a scalar operator that can be determined from its definition as
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With the help of the partial derivatives previously obtained, we find
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Thus, the Laplacian operator can be written as
V2 1a[ aj 192 P

") WP o




Spherical Coordinates z

Transforms

The forward and reverse coordinate transformations are 0
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where we formally take advantage of the two argument arctan
function to eliminate quadrant confusion.

Unit Vectors

The unit vectors in the spherical coordinate system are functions of position. It isconvenient to express them in terms of
the spherical coordinates and the unit vectors of the rectangular coordinate system which are not themselves functions of
position.
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Variations of unit vectors with the coordinates

Using the expressions obtained above it is easy to derive the following handy relationships:
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Path increment
Wewill have many uses for the path increment dr’ expressed in spherical coordinates:
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Time derivatives of the unit vectors

We will also have many usesfor the time derivatives of the unit vectors expressed in spherical coordinates:
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Velocity and Acceleration

The velocity and acceleration of a particle may be expressed in spherical coordinates by taking into account the associated
rates of change in the unit vectors:
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The del operator from the definition of the gradient

Any (static) scalar field u may be considered to be afunction of the spherical coordinatesr, 6, and ¢. Thevalueof u
changes by an infinitesimal amount du when the point of observation is changed by dr . That change may be determined
from the partial derivatives as
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But we also define the gradient in such away as to obtain the result
du = Vu-df

Therefore,
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and we demand that this hold for any choice of dr, d6, and d¢. Thus,
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Divergence

The divergence V- A iscaried out teki ng into account, once again, that the unit vectors themselves are functions of the
coordinates. Thus, we have
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Curl

The curl V x A isalso carried out taki ng into account that the unit vectors themselves are functions of the coordinates.
Thus, we have
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With the help of the partial derivatives previously obtained, we find
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Laplacian
The Laplacian is ascalar operator that can be determined from its definition as
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With the help of the partial derivatives previously obtained, we find
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Thus, the Laplacian operator can be written as
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