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gas is the same as the energy transferred to it. This can be seen from the first 
law of thermodynamics since 

 ΔE int = Q −W = Q − PΔV = Q SinceΔV = 0( )  

 For an ideal gas we can write the internal energy as 

 E int =
3
2
NkT =

3
2
nRT  (18.8) 

where N is the number of molecules, n = N/NA is the number of moles of the 
gas, and NA is Avogadro’s number. Because the volume of our gas remains 
constant, 

 ΔE int = Q = CVnΔT  

or 

 CV =
1
n

ΔE int

ΔT
"
#$

%
&'
=
3
2
R  (18.9) 

where CV is the molar heat capacity at constant volume and R is the universal 
gas constant. We can define CV for a non-ideal diatomic gas using the same 
approach, but it will not have the value 3/2 R. 
 In order to understand the Carnot cycle as an ideal heat engine cycle, we 
must explore the nature of adiabatic expansions and the work associated with 
them. Adiabatic expansions are a function of the ratio of the molar heat capac-
ity at constant volume and that at constant pressure. It can be shown mathe-
matically that the relationship between these two heat capacities is 

 CP = CV + R  (18.10) 

 If this equation is valid, then obviously CP is greater than CV. Another 
way of saying this is that when a given amount of thermal energy is trans-
ferred to a gas, the temperature of the gas will rise more when the volume is 
held constant than when the pressure is held constant. How come? This rela-
tionship can be explained using kinetic theory. 
 For simplicity, let’s consider a mole of ideal gas that has thermal energy 
transferred to it. If the volume is held constant, the gas does no work; the 
thermal energy is absorbed so that all of the thermal energy goes into speeding 
up the molecules. Since the temperature is directly related to the average speed 
of the gas molecules, all the added thermal energy goes to raising the temper-
ature of the gas. This is not the case for the situation when the pressure of the 
gas is held constant. Some of the transferred thermal energy is used up in al-
lowing the gas to expand and hence do work on its surroundings. Less energy 
is left over to speed up the molecules. Hence at constant pressure, the temper-
ature rise is less than it is at constant volume. Thus, CP is greater than CV. 

18.13.  ADIABATIC CHANGES AND THE P-V DIAGRAM 
To understand the ideal heat engine proposed by Carnot, we will calculate the 
work done when a monatomic ideal gas expands or is compressed adiabati-
cally so that no thermal energy is transferred to or from the gas. In general, as 
a gas expands to a new volume and does work, the pressure is not constant. 
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 W isothermal = nRT
1
V
dV = nRT ln

V2
V1
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  Hints:  (1) Consider why it is legitimate to pull the n, R, and T terms 
out of the integral for any isothermal expansion or compression. (2) 
What is the expression for the integral of dV/V that you derived in 
Activity 18.4.1d? 

 b. Calculate the work done when one mole of a 300 K gas expands iso-
thermally from an initial pressure of 2.49 × 103 N/m2 and volume of 
1.00m3 to a final pressure of 8.31 × 102 N/m2 and volume of 3.00m3. 

 

18.15.  THE CARNOT ENGINE CYCLE 
Let us return to a consideration of the Carnot cycle, which can be shown to be 
the most efficient possible heat engine cycle. It consists of four elements pic-
tured below on a P-V diagram: (1) work done by the gas in an isothermal ex-
pansion from  A B  in a piston at Thot; (2) work done by the gas in an adia-
batic expansion from  B C  in which the gas is allowed to cool to Tcold; (3) 
work done on the gas in an isothermal compression of the gas from  C D  at 
Tcold; and (4) work done on the gas in an adiabatic compression of the gas from 
 D A  A while temperature rises back to Thot. 

  
Fig. 18.14.  A Carnot cycle consisting of two adiabatic and two isothermal processes. 
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A Sample Carnot Cycle 

Here is a specific example of a Carnot cycle involving 1.00 moles of an ideal 
monatomic gas for which g = 5/3. It has four “legs.” You will be using this 
sample cycle data in Activity 18.15.1 to make a series of specific calculations 
that should help you understand the relationship between the thermal energy 
transfers and the temperatures of the reservoirs for a Carnot engine. 
Isothermal Expansion  A  B  
Point A: The gas is confined to a volume of 1.00 m3 and a pressure of 

2.49 × 103 N/m2. It is initially at equilibrium with a heat reservoir at a
temperature of 300 K. (A heat reservoir is a source of energy that is 
recharged so it stays at the same temperature no matter how much 
thermal energy is transferred from it.) 

Point B: The gas is allowed to do work on its surroundings by expanding iso-
thermally to a new volume of 3.00 m3 and a pressure of 
8.31 × 102 N/m2.

Adiabatic Expansion  B C
Point C: The gas is thermally isolated by wrapping the piston in an insulating 

material and is allowed to do more work and expand further adia-
batically until it has cooled to a temperature of 200 K. In this adia-
batic process the pressure drops to 3.02 × 102 N/m2 and the volume
increases to 5.51 m3. 

Isothermal Compression  C  D
Point D: The gas is placed in thermal contact with a heat reservoir at 200 K 

and work is done to compress it isothermally to a volume of 1.84 m3 
at an increased pressure of 9.05 × 102 N/m2.

Adiabatic Compression  D  A  
Point A: Again: The gas is isolated thermally by insulating it. Then work is 

done on it to compress it until it reaches a temperature of 300 K and 
a volume of 1.00 m3 once again. 

18.15.1.  Activity:  Carnot Cycle Analysis 

a. Calculate the ΔEint, Q, and W values for each of the parts of the sample 
Carnot cycle. Make use of the First Law (ΔEint = Q − W) when you can 
and recall that ΔEint = nCVΔT. Show the equations and calculations and 
then summarize the results in the blanks that follow:

1. Isothermal Expansion  A B . Hints: Recall that ΔEint can be cal-
culated from the temperature change from A to B. You should be able 
to use the isothermal work equation and calculations you did in Activ-
ity 18.14.2 to determine that WAB = 2740 J.

 A B : 

ΔEint = _________________________ J   Q = _________________________ J   W = _________________________  J
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  2. Adiabatic Expansion  B C .  Hint:  You can use the fact that no 
thermal energy is transferred to the engine so Q = 0 J and that ΔEint 
can be calculated from the known temperature change between points 
B and C. 

   B C : 

  ΔEint = _________________________ J   Q = _________________________ J   W = _________________________ J 

  3. Isothermal Compression  C  D  

   C  D : 

  ΔEint = _________________________ J   Q = _________________________ J   W = _________________________ J 

  4. Adiabatic Compression  D A  

   D A : 

  ΔEint = _________________________ J   Q = _________________________ J   W = _________________________ J 

 b. Show that the efficiency of this Carnot cycle is η = 0.33.  Write the 
equation that defines heat engine efficiency and also show your cal-
culations. 

 c. Compare the quantities listed below: 

 |Qhot| = ________________________ J Thot = ________________________ K 
 

Qhot

Thot

 = ________________________

J
K

 

 |Qcold| = ________________________ J Tcold = ________________________ K 
 

Qcold

Tcold

 = ________________________

J
K

 

 d. Do you see any relationships between the thermal energy transfers and 
the temperatures tabulated above?  Explain. 
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 e. Can you rewrite the efficiency of your Carnot cycle in terms of the 
temperature of the two reservoirs? 

 

18.16.  THE CARNOT EFFICIENCY 
From your investigation of the Carnot cycle you should have discovered that 

 
Qhot

Qcold

=
Thot
Tcold

so that
Qhot

Thot
=
Qcold

Tcold
 

 Carnot recognized that this meant that efficiency, η (“eta”), of his 
ideal cycle could be described by the equations 

 ηCarnot =
W
Qhot

=
Qhot − Qcold

Qhot

=1−
Qcold

Qhot

=1−
Tcold
Thot

.  (18.13) 

 Thus, the efficiency of a Carnot engine depends only on the temperature 
ratio between the hot and the cold reservoir. The bigger the ratio, the more 
efficient the engine. This increase in efficiency with increasing temperature 
differences holds true for other heat engine cycles, but no cycle has ever been 
found that is more efficient than the Carnot cycle for a given Tcold/Thot. What is 
the secret behind the Carnot cycle’s efficiency? In order to answer this ques-
tion scientists have introduced a new concept called entropy and studied how 
it changes during various engine cycles. Unfortunately, we do not have time to 
develop this concept. 

18.17.  THE STIRLING ENGINE AND THE SECOND LAW OF  
 THERMODYNAMICS 

The Stirling Engine 
Carnot began working on engines in hopes of improving the efficiency of the 
steam engine. Although his concept of the ideal heat engine was a rare 
achievement that laid the groundwork for the first and second laws of thermo-
dynamics, the internal combustion engine used in the cars we drive is far from 
ideal in its efficiency. The Stirling Engine Cycle proposed by the Reverend 
Robert Stirling of the Church of Scotland in 1816 is considerably closer in its 
design to the Carnot engine. In a Stirling engine a piston linked to a displace-
ment system shuffles gas back and forth between hot and cold reservoirs. The 
expansion and contraction of the gas as it is heated and cooled drives the en-
gine. In the Stirling engine waste heat (thermal energy) transferred back to the 
engine’s surroundings is recycled in an ingenious way that improves effi-
ciency. A modern working model of the early Stirling engine enables us to 
explore the quantitative behavior of a Carnot-like engine. 
 For observing the operation of the Stirling engine you will need: 
EITHER: 
 • 1 miniature Stirling engine 
 • 6 oz. of denatured alcohol 
 • 2 ice cubes 
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AND/OR 

 • 1 Visible Stirling Engine 
 • 1 ceramic coffee mug 
 • hot water 

Recommended Group Size: All Interactive Demo OK?: Y 

18.17.1.  Activity:  Stirling Engine Efficiency 

 a. Follow the instructions that come with the Stirling engines and operate 
it. Examine the engine and try to explain the elements of a basic cycle 
of the engine. Where is the hot reservoir? The cold reservoir? 

 b. Assuming that the equation describing the efficiency of the engine is 
approximately the same as that for the Carnot engine so that 

 ηCarnot =1−
Tcold
Thot

 

  what do you predict will happen to the engine if an ice cube is placed 
in contact with the cold reservoir? 

 c. Place the ice cube in contact with the cold reservoir and describe what 
actually happens to the operation of the engine. 
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