Units

Units \Rightarrow very important in describing objects or phenomena Ex.) My house is 15 away. \Rightarrow 15 m?, 15 miles?, 15 blocks?, 15 min?

- \rightarrow All numbers will need to have units associated with it.
 - measured values
 - in equations
 - final results

We'll be using standard dimensions ⇒ System of Units 2 systems that we are familiar with: 1) British system 2) Metric system (SI)

Metric system \Rightarrow 7 base dimensions

- all other quantities made up from these base dimensions

Base Dimension	<u>SI</u>	<u>also</u>	<u>British</u>
Length, [L]	meter, m	cm, km, mm	in, ft, yd
Time, [T]	second, s	min, hr, yr	
Mass, [M]	kilogram, kg	g	slug, (lb)

Careful: Weight \neq mass (weight is related to mass) mass \Rightarrow same everywhere (Earth, Moon, space) weight \Rightarrow depends on where you are Ex.) $m = 75 \text{ kg} \Rightarrow W = 165 \text{ lbs on Earth surface (734 N)}$ $\Rightarrow W = 30 \text{ lbs on Moon surface (133 N)}$

Careful: Don't confuse symbols used for quantities or in equations (*italicized*) with symbols used for units (not italicized).

F = ma m = 15 g l = 30 m

All other quantities in a system are made up of the base dimensions or units

Dimensions	<u>SI units</u>
$\begin{bmatrix} L \end{bmatrix}$ $\begin{bmatrix} T \end{bmatrix}$	$\frac{\mathrm{m}}{\mathrm{s}}$
$\begin{bmatrix} L \end{bmatrix}$ $\begin{bmatrix} T^2 \end{bmatrix}$	$\frac{m}{s^2}$
$egin{bmatrix} M \ L \ \hline T^2 \end{bmatrix}$	$\frac{\mathrm{kg}\cdot\mathrm{m}}{\mathrm{s}^2} = \mathrm{N}$
$\frac{\begin{bmatrix} M \end{bmatrix} L^2 \end{bmatrix}}{\begin{bmatrix} T^2 \end{bmatrix}}$	$\frac{kg \cdot m^2}{s^2} = J$
	$\lfloor L \rfloor$

Other base units that you will use in Physics 152 are:

Base Dimension	<u>SI</u>	<u>also</u>	<u>British</u>
Electric Current	Ampere, A		
Temperature	Kelvin, K	°C	°F

One supplementary base unit is:

Base Dimension	<u>SI</u>	<u>also</u>
angle	radian (rad)	deg, grads

"Pseudo" unit: unit sometimes drops out of equation.

Ex.) Arc length,
$$s = r\theta = (2 \text{ m}) (\pi/4 \text{ rad}) = 1.57 \text{ m}$$

Ex.) angular speed, $\omega = \frac{\Delta \theta}{\Delta t} = \frac{3.14 \text{ rad}}{4.0 \text{ s}} = 0.79 \frac{\text{rad}}{\text{s}}$
Ex.) tangential speed, $v = r\omega = (2m \left(0.79 \frac{\text{rad}}{\text{s}}\right) = \left(1.57 \frac{\text{m}}{\text{s}}\right)$

We really like the metric system

 \Rightarrow Base 10 system

 \Rightarrow Larger/smaller units found by multiplying/dividing by powers of 10

 \Rightarrow Larger/smaller units in British system inconsistent (a pain).

eg. in \rightarrow ft : divide by 12 ft \rightarrow yd : divide by 3

Each multiple of metric base unit has a prefix associated with it.

Prefix	<u>Multiplier</u>	Example units
k, kilo	$1000 (10^3)$	kg, km
M, mega	$1000000 (10^6)$	MJ
c, centi	$1/100 = 0.01 \ (10^{-2})$	cm, cs
m, milli	$1/1000 = 0.001 (10^{-3})$	mm, mL
µ, micro	$1/1000000 = 0.000001 (10^{-6})$	μs, μm, μN

eg. $180 \text{ cm} \Rightarrow 180 \times 10^{-2} \text{ m}$

Measurements have dimensions and units

 \Rightarrow equations using these measurements have dimensions and units also. units on left side of equation = units on right side of equation (match)

Ex.)
$$A = w l$$

 $[L^2] = [L][L]$
 $[L^2] = [L^2] \sqrt{m^2 = (m)(m), ft^2 = (ft)(ft)}$

We can use this dimensional equality to:

1) find units or dimensions of a new quantity

2) help remember an equation

Ex.)
$$F = ma$$

$$[?]= [M] \begin{bmatrix} L \\ T^2 \end{bmatrix} \implies F \text{ has units of } \begin{bmatrix} M \end{bmatrix} \begin{bmatrix} L \\ T^2 \end{bmatrix}$$

Ex.) Does $V = \frac{4}{3}\pi R^2$ or $V = \frac{4}{3}\pi R^3$

$$[L^3] \neq [L^2] \qquad [L^3] = [L^3] \sqrt{2}$$

Conversions

We'll need to convert between the British and SI system.

- conversion factors given in book (front cover)

Ex.)
$$(6.0 \,\text{ft}) \left(\frac{0.3048 \,\text{m}}{1.0 \,\text{ft}} \right) = 1.8 \,\text{m}$$

 $\left(4.0 \,\text{m}^3 \right) \left(\frac{3.281 \,\text{ft}}{1.0 \,\text{m}} \right)^3 = 141 \,\text{ft}^3$