Units

Units \Rightarrow very important in describing objects or phenomena
Ex.) My house is 15 away. $\Rightarrow 15 \mathrm{~m}$?, 15 miles?, 15 blocks?, 15 min ?
$\rightarrow \quad$ All numbers will need to have units associated with it.

- measured values
- in equations
- final results

We'll be using standard dimensions \Rightarrow System of Units
2 systems that we are familiar with:

1) British system
2) Metric system (SI)

Metric system $\Rightarrow 7$ base dimensions

- all other quantities made up from these base dimensions

$\underline{\text { Base Dimension }}$	$\underline{\text { SI }}$	$\underline{\text { also }}$	$\underline{\text { British }}$	
Length, $[\mathrm{L}]$		meter, m	$\mathrm{cm}, \mathrm{km}, \mathrm{mm}$	in, ft, yd
Time, $[\mathrm{T}]$	second,	min, hr, yr		
Mass, $[\mathrm{M}]$	kilogram, kg	g	slug, (lb)	

Careful: Weight \neq mass (weight is related to mass) mass $\quad \Rightarrow$ same everywhere (Earth, Moon, space) weight \Rightarrow depends on where you are
Ex.) $\quad m=75 \mathrm{~kg} \Rightarrow W=165 \mathrm{lbs}$ on Earth surface (734 N)
$\Rightarrow W=30 \mathrm{lbs}$ on Moon surface (133 N)

Careful: Don't confuse symbols used for quantities or in equations (italicized) with symbols used for units (not italicized).

$$
F=m a \quad m=15 \mathrm{~g} \quad l=30 \mathrm{~m}
$$

All other quantities in a system are made up of the base dimensions or units

Quantity	$\frac{\text { Dimensions }}{[L]}$	SI units
velocity, v	$[T]$	$\frac{\mathrm{m}}{\mathrm{s}}$
acceleration, a	$[L]$	$\frac{\mathrm{m}}{\mathrm{s}^{2}}$
Force, F	$\left[T^{2}\right]$	$\frac{\mathrm{kg} \cdot \mathrm{m}}{\mathrm{s}^{2}}=\mathrm{N}$
Work, W	$\frac{[M \mid L]}{\left.T^{2}\right]}$	$\frac{\mathrm{kg} \cdot \mathrm{m}^{2}}{\mathrm{~s}^{2}}=\mathrm{J}$
Energy $, E_{k}, E_{p}$	$\left.[M] L^{2}\right]$	$\left.T^{2}\right]$

Other base units that you will use in Physics 152 are:

Base Dimension	$\underline{\text { SI }}$	also	British
Electric Current Temperature	Ampere, A Kelvin, K	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$

One supplementary base unit is:
Base Dimension
angle $\quad \underline{\text { SI }} \quad \underline{\text { also }}$
"Pseudo" unit: unit sometimes drops out of equation.
Ex.) Arc length, $s=r \theta=(2 \mathrm{~m})(\pi / 4 \mathrm{rad})=1.57 \mathrm{~m}$
Ex.) angular speed, $\omega=\frac{\Delta \theta}{\Delta t}=\frac{3.14 \mathrm{rad}}{4.0 \mathrm{~s}}=0.79 \frac{\mathrm{rad}}{\mathrm{s}}$
Ex.) tangential speed, $v=r \omega=(2 \mathrm{~m})\left(0.79 \frac{\mathrm{rad}}{\mathrm{s}}\right)=\left(1.57 \frac{\mathrm{~m}}{\mathrm{~s}}\right)$

We really like the metric system
\Rightarrow Base 10 system
\Rightarrow Larger/smaller units found by multiplying/dividing by powers of 10
\Rightarrow Larger/smaller units in British system inconsistent (a pain).
eg. \quad in $\rightarrow \mathrm{ft}$: divide by 12
$\mathrm{ft} \rightarrow \mathrm{yd}:$ divide by 3
Each multiple of metric base unit has a prefix associated with it.

Prefix	$\underline{\text { Multiplier }}$	$\underline{\text { Example units }}$
k, kilo	$1000\left(10^{3}\right)$	kg, km
M, mega	$1000000\left(10^{6}\right)$	MJ
c , centi	$1 / 100=0.01\left(10^{-2}\right)$	cm, cs
m , milli	$1 / 1000=0.001\left(10^{-3}\right)$	mm, mL
μ, micro	$1 / 1000000=0.000001\left(10^{-6}\right)$	$\mu \mathrm{s}, \mu \mathrm{m}, \mu \mathrm{N}$
eg. $\quad 180 \mathrm{~cm} \Rightarrow 180 \times 10^{-2} \mathrm{~m}$		

Measurements have dimensions and units
\Rightarrow equations using these measurements have dimensions and units also. units on left side of equation $=$ units on right side of equation
(match)
Ex.) $A=w l$
$\left[\mathrm{L}^{2}\right]=[\mathrm{L}][\mathrm{L}]$

$$
\left[\mathrm{L}^{2}\right]=\left[\mathrm{L}^{2}\right] \sqrt{ } \quad\left\{\mathrm{m}^{2}=(\mathrm{m})(\mathrm{m}), \mathrm{ft}^{2}=(\mathrm{ft})(\mathrm{ft})\right\}
$$

We can use this dimensional equality to:

1) find units or dimensions of a new quantity
2) help remember an equation

Ex.) $\quad \begin{array}{ll}F & =c \\ {[?]=} & m a \\ {[M][L]}\end{array} \quad \Rightarrow F$ has units of $[M]\left[\begin{array}{l}{\left[T^{2}\right]}\end{array}\left[\begin{array}{l}L]\end{array}\right.\right.$

$$
\begin{array}{llll}
\text { Ex.) Does } & V=\frac{4}{3} \pi R^{2} & \text { or } & V=\frac{4}{3} \pi R^{3} \\
& {\left[\mathrm{~L}^{3}\right] \neq\left[\mathrm{L}^{2}\right]} & & {\left[\mathrm{L}^{3}\right]=\left[\mathrm{L}^{3}\right] \sqrt{ }}
\end{array}
$$

Conversions

We'll need to convert between the British and SI system.

- conversion factors given in book (front cover)

$$
\begin{aligned}
\text { Ex.) } \quad \begin{aligned}
(6.0 \mathrm{ft})\left(\frac{0.3048 \mathrm{~m}}{1.0 \mathrm{ft}}\right) & =1.8 \mathrm{~m} \\
\left(4.0 \mathrm{~m}^{3}\right)\left(\frac{3.281 \mathrm{ft}}{1.0 \mathrm{~m}}\right)^{3} & =141 \mathrm{ft}^{3}
\end{aligned} \text {. }{ }^{3} \text {. }
\end{aligned}
$$

